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Abstract—We have proposed the concept of simple and fast 

binary arithmetic coder, STT-coder, in which arithmetic 

operation can be executed by referring a state transition 

table just like the case of Huffman coding. In our previous 

study, STT-coder with 3-bit interval register was designed 

and evaluated. Its coding efficiency was found to be 

satisfactory despite of the introduction of the simplification 

of the process. Then we have been trying to extend the 

register to 6-bit length in order to improve the performance 

of higher MPS probability sources. In this paper, we 

introduce a coding parameter of STT-coder, which is called 

as offset, and optimize the value to maximize the average 

coding efficiency. We further tried to enlarge the expected 

interval size after the renormalization to improve the coding 

efficiency of higher MPS probability sources by sacrificing 

the accuracy of interval division ratio in low MPS 

probability sources, which turned out to improve the coding 

efficiency in total. 

 

Index Terms—image compression, arithmetic coding, 

entropy, coding efficiency 

 

I. INTRODUCTION 

Arithmetic coding has flexible adaptability to various 

information sources, and provides high coding efficiency. 

Because of its advantage, it is extensively used in many 

image and video coding standards such as JPEG2000 [1] 

and MPEG-4 AVC [2]. On the other hand, the 

disadvantage of arithmetic coding is its complexity of 

operations. The studies on arithmetic coding have 

hitherto been mainly tuned for the simplification of 

probability interval calculation such as in range coder [3], 

Q-Coder [4] and MQ-Coder [1] and [5]. On the other 

hand, we have proposed an adaptive binary arithmetic 

coder, STT-coder, which can be realized by simple and 

fast arithmetic operations driven by state transition table 

[6]-[8]. 

In this paper, we report designing principle of STT-

coder and its static coding efficiency, from two studying 

points. One is the optimization of a parameter of STT-

coder, called as offset, which affects both of the state 

transition table size and the coding efficiency. The other 

is the trade-off between the accuracy of the interval 

division probability and the largeness of the valid interval 

width after the renormalization, in which, we will try to 
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enlarge the interval size after renormalization by 

sacrificing the accuracy of probability interval of low 

MPS probability sources to improve the average coding 

performance. 

II. ARITHMETIC CODER DRIVEN BY STATE 

TRANSITION TABLE: STT-CODER 

A. Structure of STT-Coder 

STT-coder is a binary arithmetic coder dealing with 

binary symbols converted to MPS (More Probable 

Symbol) or LPS (Less Probable Symbol), being 

composed of two main blocks, probability estimation and 

probability interval division, as shown in Fig. 1. In this 

paper, we mainly focus on the probability interval 

division block in 6-bit STT-coder. The probability 

interval division procedure of STT-coder can be driven 

by a state transition table, which we call interval division 

table. 

As the process of arithmetic coding is going forward, 

the valid interval becomes smaller and smaller. The 

conventional arithmetic coder will apply renormalization 

procedure whenever the interval becomes less than the 

half of maximum interval. However, we will consider 

whether next code bits are fixed or not, and proposed 

STT-coder will apply the renormalization only when next 

code bits are fixed. Therefore complicated operations like 

multiplication times control or carry-over bit control are 

not necessary. Therefore, the interval division table 

outputs a codeword (when the next code bits are fixed) or 

a succeeding probability interval (when the next code bit 

is not yet fixed) for each binary input symbol, according 

to the size of the current probability interval as shown in 

Fig. 1. In STT-coder, if the valid interval becomes 

smaller and smaller without fixing the next code bit, the 

valid interval cannot be renormalized despite of its size. 

In such a case, the coding efficiency will be degraded 

especially for high MPS probability sources because 
MPS/LPS subdivision ratio cannot follow its ideal 

balance. In order to minimize such effect, we will 

introduce a coding parameter called offset and examine 

the relation between the coding efficiency and the 

parameter value. 
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Figure 1.  STT-coder block diagram. 

B. Example of STT-Coder with 3-Bit Register 

At first we will show an example of interval division 

of STT-coder with a quite short interval register size of 3-

bit. To design the interval division table, we should 

consider three parameters, probability interval AML, MPS 

width AM (or LPS width AL (=AML-AM) ) and offset D, 

which will vary along the probability interval division for 

arithmetic coding as depicted in Fig. 2. In Fig. 3, all of 

the probability interval division patterns are shown. This 

was designed skillfully so that the interval division table 

will be kept quite small, yet it maintains the coding 

efficiency as high as possible. In Fig. 3, M and L denote 

MPS and LPS encoded with the corresponding interval 

width, respectively. Characters after a symbol are the 

codeword (not in parenthesis) and next probability 

interval index of the state transition (in parenthesis). After 

encoding a symbol with no probability interval index, the 

state returns to the initial condition, AML=8 and D=0. 
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.000000

.111111
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Figure 2.  Probability interval division. 
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Figure 3.  Interval division patterns of 3-bit STT-coder. 
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In Table I, LPS width AL (= AML-AM) and 

corresponding probability interval index for each 

combination of AM and AML values are summarized. 

Since the maximum width is 8 (=2
3

 ), the ranges of the 

three parameters are limited as follows: 

8/2 < AML+D <= 8                            (1) 

AML/2 <= AM < AML                                          (2) 

The LPS interval is mostly placed at the upper side of 

the interval, but in some cases it is placed at the lower 

side to expect larger interval size after the 

renormalization to provide better coding performance. In 

Table I, gray cells indicate that the LPS interval is placed 

at the lower side, and cells with a diagonal line are not 

valid because those are beyond the limit of equation (1) 

and (2). 

TABLE I.  LPS WIDTH AL FOR EVERY COMBINATION OF AM AND AML 

(3-BIT STT-CODER). 

(a) offset D=0 

      AML 
AM   

5 6 7 8 

7       1 (R8) 

6     1 (R7) 2 (R8) 

5   1 (R6) 2 (R7) 3 (R8) 

4 1 (R5) 2 (R6) 3 (R7) 4 (R8) 

3 2 (R5) 3 (R6)     

(b) offset D=2 

      AML 

AM   
3 4 5 6 

5       1 (R6a) 

4     - 2 (R6a) 

3   1 (R4a) - 3 (R6a) 

2 1 (R3b) 2 (R4a)     

(c) offset D=3 

      AML 

AM   
2 3 4 5 

4       1 (R5a) 

3     - 2 (R5a) 

2   1 (R3a) -   

C. Probability Estimations 

The probability estimation system, if any, outputs 

another parameter, probability state. We map a range of 

MPS probability to corresponding probability state, and 

let PMi denote the best MPS probability to perform the 

highest efficiency for each probability state Si. Note that 

we are dealing with static coding efficiency, assuming 

that the ideal probability state is always selected by the 

probability estimation system, in this paper. In order to 

execute an adaptive control of probability estimation to 

select appropriate coding parameters for unknown 

information sources, we will apply probability estimation 

system as shown in the left side of Fig. 1. 

III. DESIGN PRINCIPLE OF STT-CODER 

A. Design of STT-Coder 

In the previous section, we showed the outline of 
STT-coder taking the case of quite short register size as a 
fundamental study. It was found that coding efficiency is 
satisfactory despite of the introduction of the 

simplification of the process. However, since the 

performance of the higher MPS probability sources is not 

good enough because of its register size, we extend the 

probability interval register size to 6 bits to prepare for 

higher MPS probability sources based on the study of the 

3-bit interval register. 

In this section, we will show the design principle of the 

probability interval table for the 6-bit STT-coder. To 

design the probability interval table, we need to decide an 

LPS width for every combination of offset D, probability 

interval AML and probability state Si. For the 6-bit system, 

as the maximum value of AML is 64 (=2
6
), these 

parameters range as follow: 

64/2 < AML+D <= 64                           (3) 

AML/2 <= AM < AML                                          (4) 

As was mentioned in the previous section, the 

probability interval AML takes any value between the 

range defined above, because LPS width AL takes the 

minimum value 1 for every AML to express high MPS 

probabilities.  
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Figure 4.  Ideal coding efficiency of the coding method. 

The range of the sources to be covered by a probability 

state is determined so that theoretical coding efficiency 

within the range would be larger than a predetermined 

minimum coding efficiency. Fig. 4 shows the coding 

efficiency for each probability state with the 

predetermined minimum coding efficiency of 0.99. After 

the set of probability states or set of PMi is determined, we 

chose LPS width AL in given AML, for all probability 

states. The number of probability states is eight for 6-bit 

register case, and the number of offsets will be discussed 

later in following Section III.B. 

It is ideal to set the MPS width AM for the valid 

interval AML to be the closest value of [AML multiplied by 

PMi] as shown in Table II. Also it is necessary to satisfy 

that the next offset, after the happening of either symbol, 

shall be any of the allowed values. If the LPS interval can 
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be assigned to either of the upper or lower area in the 

probability interval, the assignment maximizing the 

minimum interval width value for the next symbols is 

selected. Table III shows a part of the Interval division 

table of 6-bit STT-coder. The total number of input bits is 

12, and total number of output bits is 17. 

TABLE II.  LPS WIDTH OF EIGHT PROBABILITY STATES FOR EACH PROBABILITY INTERVAL (6-BIT RESISTER, OFFSET D=0) (UNDERLINED LPS 

WIDTH DENOTES THAT LPS INTERVAL IS ASSIGNED UNDER THE MPS INTERVAL.) 

 

Probability interval AML Best MPS 
Prob. PMi 64 63 62 61 60 … … 35 34 33 

P
ro

b
ab

ility
 state 

S0 
28 28 28 28 28 … … 16 16 16 0.559 

S1 
20 19 22 21 20 … … 11 10 9 0.671 

S2 
16 15 14 15 14 … … 7 6 9 0.769 

S3 
10 9 10 9 8 … … 7 6 5 0.847 

S4 
6 7 6 6 6 … … 3 2 5 0.904 

S5 
4 4 4 3 3 … … 2 2 1 0.942 

S6 
2 2 2 2 2 … … 1 1 1 0.967 

S7 1 1 1 1 1 … … 1 1 1 0.982 

TABLE III.  PROBABILITY INTERVAL DIVISION TABLE FOR 6-BIT STT-
CODER. 

Input Output 

3bit 5bit 2bit 1bit 6bit 3bit 5bit 2bit 

Si AML D 
MPS 

/LPS 
code 

Code 

length 
AML D 

S0 

33 

0 

M - 

 

0 17 16 

L 00 2 64 0 

34 
M - 0 18 16 

L 00 2 64 0 

35 
M - 0 19 16 

L 00 2 64 0 

･･･ 
M - 0 20 16 

･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ 

･･･ 
･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ 
･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ 
･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ ･･･ ･･･ ･･･ 

S7 

･･･ 
･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ ･･･ ･･･ ･･･ 

63 
M - 0 62 0 

L 111110 6 64 0 

64 
M - 

 
0 63 0 

L 111111 6 64 0 

S0 

17 

16 

M - 0 9 24 

L 010 3 64 0 

18 
M - 0 10 24 

L 010 3 64 0 

･･･ 
･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ 
･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ 

28 

･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ ･･･ ･･･ ･･･ 

S7 

･･･ 
･･･ ･･･ ･･･ ･･･ ･･･ 

･･･ ･･･ ･･･ ･･･ ･･･ 

35 
M - 0 34 28 

L 111110 6 64 0 

36 
M - 0 35 28 

L 111111 6 64 0 

B. Restriction of Offsets 

Although the restriction of the allowed offset values 

contribute to simplify the coder, it restricts the liberty to 

choose best LPS width for a given probability state. 

Therefore we examined how the number of allowed 

offsets, which we denote by N, affects the coding 

efficiency.  

First of all, we examined the coding efficiency for the 

case where only one offset (D=0) is allowed (N=1). 

Assuming the coding of a multi-context source, that is, 

the occurrence probability of a symbol depends on its 

context, we calculated the coding efficiency for each 

context of STT-coder. Note that we assume, in this paper, 

that an appropriate probability state is always selected 

according to the context when encoding a symbol. Also 

we assumed that MPS probability is uniformly distributed 

between 0.5 and 1 in supposed multi-context source. 
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Figure 5.  Coding efficiency for various offset number. 

In Fig. 5, the coding efficiency of STT-coder having 

only one offset is denoted as N=1. It can be seen that 

coding efficiency for lower MPS probability is not so 

good, since allowed candidates of LPS width are rather 

limited. However, for higher MPS probability sources, 

the coding efficiency is quite high. It is because that the 

average probability interval width is large, and the LPS 
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width AL=1 to assure high performance for high MPS 

probability sources can be used for all probability interval 

width AML in the case of offset D=0. 

For the next step, we added one more offset D=24, 

which caused the highest improvement of coding 

efficiency among other possible offsets. Under these two 

offsets of D=0 and D=24, the candidates of LPS widths 

are increased and the coding efficiency for lower MPS 

probability was significantly improved. For higher MPS 

probability sources, the coding efficiency was decreased, 

since the expected probability interval width gets smaller 

on average especially for D=24.  

With the same manner, the offsets of D=16 and D=28 

were found to perform best for the third and fourth offset 

values respectively. Further addition of offsets is proved 

to cause a little improvement for lower MPS probability 

sources (see the coding efficiency for N=8 in Fig. 5), but 

some degradation for high MPS probability sources, and 

does not contribute to improve the total coding efficiency. 

Therefore we concluded that the optimal offset number N 

equals to four and the combination of four offset values 

are (D=0, 16, 24, 28) for the 6-bit STT-coder. 

Table II is the partial data of LPS width of eight 

probability states for each probability interval in D=0. 

For different offset values, the possible number of the 

valid intervals are usually 32 same as the case of offset 

D=0, since the upper address of the valid intervals will 

take between 32 and 63. The different LPS width data 

table is necessary for each offset value. 

C. Trade-off of the Accurate Probability Interval 

Division and Larger Interval Providing Division 

In the experiments of the previous section, the addition 

of D=28 as the fourth offset is found to improve the 

coding efficiency for low MPS probability, but to degrade 

the coding efficiency for high MPS probability at the 

same time, as a larger offset value such as 28 generally 

work to reduce the average probability interval width. 

Therefore we examined the trade-off between the 

selection of the more accurate probability interval 

division with large offset and the division to provide 

larger interval size by causing the renormalization. That 

means, we tried to enlarge the interval size by causing the 

renormalization in sacrificing the coding efficiency of the 

low MPS probability source.  

MPSAM=6
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(a) Not modified
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AL=4 64      0

40      0

(b) Modified

LPS
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MPSAM=5

next      next
interval  offset 

 

Figure 6.  Modification of probability interval division. 

In Fig. 6, an example of the modification is illustrated. 

In the case that probability interval AML=9, LPS width 

AL=3 and offset D=28, the next values after 

renormalization will be AML=24 and D=16 if LPS 

happens, or AML=6 and D=28 if MPS happens, as shown 

in Fig. 6 (a). If we modify the interval division as in Fig. 

6 (b), the next values after renormalization will be 

AML=64 and D=0 if LPS happens, or AML=40 and D=0 if 

MPS happens, which provides larger probability interval 

size and improves the average coding efficiency.  

We applied this idea to all the cases of AL=3 and 5, 

that is, if LPS width AL=3 or 5 is selected for D=28 by 

the procedure described in Section III.B., the LPS width 

would be modified to AL=4 and the LPS is assigned in 

the lower side of the interval. Also the case of AL=8 for 

offset D=24 has the same effect. So we prohibited the 

probability interval division of AL=7 or 9 for D=24, and 

changed it to AL=8 and set the LPS to the lower side of 

the interval. Note that this modification of the interval 

division can be realized by changing the interval division 

table before encoding, without affecting the encoding 

procedure. 
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Figure 7.  Coding efficiency. 

In Fig. 7, we showed the coding performance of STT-

coder using the above interval modification. Though 

slight degradation of coding efficiency can be found 

around the probability corresponding to the probability 

state S2, at which the probability interval modification has 

a bad effect, its coding efficiency is improved especially 

for high MPS probability, and this modification is found 

to achieve better performance in total. 

IV. CONCLUSION 

In designing our proposed arithmetic coder, driven by 

a state transition table, we examined how its parameter, 

called offset, affects the coding efficiency.  

It was found that the coding efficiency for low MPS 

probability gets better as the number of offsets N 

increases, though the efficiency for higher MPS 

probability gets worse, since the expected interval size 

becomes smaller. From the experiments, we concluded 

that the number of offset N equals to four, which are 

composed of the offset values of D=0, 16, 24, and 28, is 

the most efficient case for 6-bit STT-coder.  
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We also examined the trade-off between the accurate 

probability interval division and the less accurate but 

providing larger interval division by causing the 

renormalization. The trial to modify the division ratio of 

the symbols, especially for large offset cases, to make the 

interval size larger by causing renormalization was found 

to improve the coding efficiency in total, though the 

coding efficiency of the low MPS probability sources will 

be a little sacrificed.  

We examined static coding efficiency in this paper, 

that is, ideal probability estimation of information source 

is applied. For the next step, we will introduce dynamic 

probability estimation method for more practical coder 

design.  
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