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Abstract—This paper presents a new approach for tunes 

similarity calculation based on repetitions. Information 

about repetitions in tunes is important since repetitions 

make very significant impression to listener. We are 

providing a way to describe tunes in descriptors which 

contain frequency information about repetitions of tunes. 

Frequency information is retrieved by means of a relatively 

new signal processing approach called instantaneous 

frequency spectrum (IFS). Further tunes comparison takes 

this repetitions frequencies information from one tune 

descriptor and compares to second tune’s descriptor. As a 

result we obtain the similarity between compared tunes. We 

show that proposed approach gives meaningful information 

about music pieces similarity and it can successfully be used 

in music signal processing tasks. 

 

Index Terms—music similarity, repetitions, instantaneous 

frequency spectrum (IFS), empirical mode decomposition 

(EMD), Hilbert transforms (HT) 

 

I. INTRODUCTION 

Very large number of music pieces exist in the world 

today. People listen to different genres of music, such as 

classical, popular, jazz, blues and others. It was observed, 

that people usually listen to the same kind of music they 

prefer. For example, same artist usually performs his 

singles in the same manner, mood, and musical genre. 

Although it is well established that people respond 

emotionally to music, little is known about precisely what 

it is in the music that they are responding to [1]. 

To find a new tune we will like, we have to listen to 

this music piece to find out whether we will like it or not. 

As soon as various structures in music influence on us, 

we have to consider something more than just separate 

characteristics such as tonality, timbre, speed, or pitch. 

Repetitive parts in music pieces contain the most 

representative and significant information about the tune. 

Generally speaking, the more repetitions and similar 

phases there are in a piece of music, the easier it is for 

people to have affinity for it. For example, in the popular 

music style choruses are repeated several times in the 

tune. That makes it possible to easily remember the tune 

and recall it from the memory when we want to listen 

something similar.  

                                                                 


Manuscript received August 28, 2013; revised November 19, 2013. 

The ultimate goal of this research is to find and 

presents similarity of music tunes by means of repeated 

parts in it. That will help people to find music pieces they 

may be even do not know, but most probably will like. 

Such tunes can have different tonality and may be even 

have different genre, but sound very similar to tunes the 

person prefers to listen. Finding the similarity between 

music pieces contribute to the task of playlist suggestion 

for listeners. 

However, there is no complete theory for music 

structure automatic analysis. At present there are 

encouraging researches on detecting the most frequently 

appearing component in a piece of music based on music 

structure analysis. Researches have made “music 

thumbnails” and “audio summarization” by detecting the 

most representative part of a piece of music. Some 

researchers have found repetitions by performing self-

similarity calculations with Mel-Frequency Cepstral 

Coefficients (MFCCs) [2] and [3]; others have identified 

them based on approximate transcription results. 

This paper is organized as follows: Section II describes 

main steps of the processing method. Section III presents 

tunes comparison approach. Section IV describes 

experimental results and discussions based on obtained 

outcomes. Section V summarizes the paper.  

II. APPROACH 

 

Figure 1. Tune’s descriptor calculation. 

The idea of music processing to get a tune descriptor is 

outlined in Fig. 1. White boxes show data and blue boxes 

show processing steps. Acoustic data is used as an input. 
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We create a tune descriptor by using repetitions within 

tune. These repetitions are processed by means of 

empirical mode decomposition [4] and splits into a 

number of intrinsic functions. These functions are used to 

get an instantaneous frequency spectrum [5]. 

IFS spectrums of repetitions make the tune descriptor. 

To find similarity between two tunes, their descriptors 

spectrums are compared to each other by using sum of 

squared differences of every spectrum part. As a result, 

we get a similarity between two music pieces. We use 

PCM data in the mono WAV format with a 44100 Hz 

sampling and 16-bit quantization as input data. 

A. Repetitions 

Information regarding repetitions in a piece of music is 

important since it is related to affinity for music, though 

of course the relationship between repetitions and affinity 

varies from person to person. 

In this work, we carefully selected repetitions within 

music pieces by music notes to create tunes descriptors. 

Those repetitions were then processed with IFS to create 

a descriptor for the considered tune. This idea is presented 

in Fig. 2. 

 

Figure 2. Tune repetitions and descriptor. 

B. Empirical Mode Decomposition 

The EMD is a way to decompose a signal into so-

called intrinsic mode functions (IMFs) [6]. Since the 

decomposition is based on the local characteristic time 

scale of the data, it can be applied to nonlinear and non-

stationary processes.  

To extract IMFs from the signal X(t), all local extrema 

should be found first. Then we should create an upper 

envelope eu(t) by local maxima and a lower envelope el(t) 

by local minima. Envelopes are built by cube-spline 

interpolation. Using the upper and lower envelopes, the 

mean m(t) is calculated as (1). The result is shown in Fig. 

3. 

 ( )  
  ( )   ( )

 
                            (1) 

 

Figure 3. Signal (blue), its envelopes (green) and mean (red) by 
envelopes. 

The difference between the data and m(t) is the first 

component h1(t), which represents proto IMF. An IMF is 

defined as a function that satisfies two requirements: 

First, the number of extrema and the number of zero-

crossings must either be equal or differ at most by one. 

Second, at any point, the mean value of the envelope 

defined by the local maxima and the envelope defined by 

the local minima is zero. 

Until h1(t) does not satisfy the definition of the IMF 

mentioned above, it should be iteratively refined using the 

same procedure. Thereby for h1(t) we get next component 

h2(t) and then h3(t) and so on until stop criteria (2) 

becomes true, where ε is a small number. In this work ε 

was set to 0.0001. 

∑ (  ( )     ( ))  

∑ (    ( ))  
                         (2) 

After repeated refinement up to k times, hk(t) becomes 

the first IMF of the signal, called c1(t). Fig. 4 shows the 

first obtained IMF. 

 

Figure 4. First IMF obtained from the signal. 

By subtracting c1(t) from initial data we get the residue 

r(t), as shown in (3) and in Fig. 5. 

 ( )   ( )    ( )                        (3) 

 

Figure 5. Residue after subtracting first IMF c1. 

In the next round of the sifting process the residue r(t) 

is considered as a signal X(t) and the sifting procedure is 

repeated the same way to obtain c2(t), then c3(t), and so on 

until residue becomes a monotonic function without 

extrema. When we sum all obtained IMFs with the last 

residue, we get initial data signal as (4). 

 ( )  ∑   
 
      ....                   .(4) 

The good feature of such decomposition is that each 

IMF represents an intrinsic component of the real 

physical effect. Fig. 6 shows the original signal and IMFs 

obtained by means of EMD. 

 

Figure 6. The resulting empirical mode decomposition components 
from the music data: the original data X(t) and the components c1 

– c3; rn is a trend. 

International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013

171©2013 Engineering and Technology Publishing



C. Hilbert Transform  

The Hilbert transform can be interpreted as a phase 

shifter, which changes the phase of all frequency 

components of a signal to π/2. To shift a phase, the initial 

signal is processed with a Fourier transform (FT) and then 

every component of the resultant spectrum is multiplied 

by imaginary i and the spectrum is converted back to 

signal using the inverse Fourier transform (IFT). 

 

Figure 7. Initial signal (blue) and obtained imaginary signal after HT (red). 

An example of the original signal and derived signal 

with shifted phase are shown in Fig. 7. 

The imaginary signal (t) is orthogonal to original 

signal X(t). This feature allows us to develop from (t) 

and X(t) a complex analytical signal H(t) (5). H(t) is 

described as a vector on the complex plane where X(t) 

and (t) are projections to real and imaginary axes, 

respectively.  

 ( )    ( )     ̃( )                        (5) 

The advantage of this representation is that we have an 

opportunity to determine instantaneous parameters of the 

signal H(t), i.e., the amplitude and frequency, where the 

radius of each circle represents the amplitude and the 

space between circles means the frequency. 

Instantaneous amplitude is calculated as complex 

number length in (6). 

 ( )  √(     ( ))  (     ( ))         (6) 

Instantaneous frequency is calculated as instantaneous 

phase derivative of a signal (7). Where phase φ is 

calculated as (8) 

 ( )  
 

  
  ( )                             (7) 

 ( )             ( )

     ( )
                       (8) 

D. Instantaneous Frequency Spectrum 

The IFS calculation method is outlined in the Fig. 8. As 

inputs, we use a number of IMFs that represent intrinsic 

functions of the same signal. White boxes show data and 

blue boxes show processing steps. As an output, we get a 

histogram of amplitudes by frequencies. For each IMF, 

we get instantaneous frequencies and instantaneous 

amplitudes using the Hilbert transform. These frequencies 

and amplitudes are used to create a histogram. Formally, 

this is described in (9.1) - (9.2). 

 

Figure 8. Scheme for calculating the IFS.

   ∑  ( )     (   )      ( )   ( )     (9.1) 

     ̅̅ ̅̅ ̅ 

 ( )     
 

 
              (9.2) 

where bi is height of i-th bar of the histogram,  

A(t) is an instantaneous amplitude at time t, 

f(t) is an instantaneous frequency at time t, 

β(i) is a frequency upper boundary for i-th histogram 

bar, 

N is a number of bars in the histogram, 

Fmax is maximal frequency. 

For this paper, a 100-bar histogram was used (N = 100) 

with maximal frequency of 20 kHz (Fmax = 20 000). 

III. TUNES COMPARISON 

To compare two tunes we have to compare every 

repetition of first tune to every repetition of second tune. 

Those pairwise repetitions comparison results have to be 

considered to calculate the tunes difference. 

Schematically it is displayed on Fig. 9. 

x~

x~

x~
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Figure 9. Tunes comparison method. 

There are different approaches to combine multiple 

results from repetitions comparison into one single 

number for tunes difference. We give three approaches 

how it can be done. Hereafter we reference them as AVG, 

MIN and AVGk. 

AVG approach requires taking average of all repetition 

comparison as shown in (10). 

   (   )  
 

   
∑ ∑     (     )

 
   

 
        (10) 

where comp(Ai,Bj) is a comparison result for i-th 

repetition from tune A and j-th repetition from tune B. 

MIN approach requires taking the smallest value, 

which means that tunes become as different as their most 

similar repetitions difference is. Equation (11) shows the 

way how to calculate it. 

   (   )           
      

    (     )       (11) 

AVGk approach requires taking average of k smallest 

values from all repetition pairs comparisons. k should be 

calculated from tunes repetitions count as in (12). 

    (   )  
 

 
∑    {        (     )      ̅̅ ̅̅ ̅  

 

   

    ̅̅ ̅̅ ̅̅ }
 
           (√   ) 

                                    (12) 

where k is the number of elements we take into account; 

   { }  is a p-th element of set of x elements ordered in 

ascending order. In other words, we take k minimal 

elements from all items. 

A. Two Different Tunes Comparison 

Here we consider example of two tunes comparison: 

Tune A and Tune B. Both have three repetitions. Let’s 

assume that we compared all repetitions of those tunes. 

Fig. 10 shows the results of those comparisons. 

 

Figure 10. Two different tunes comparison example. 

TABLE I. METHODS RESULTS COMPARISON 

Type Result Comment 

AVG 2.06 All information is taken into account 

MIN 1.00 Too few information is considered 

AVGk 1.17 Part of information is considered 

In Table I methods results comparison are represented. 

For different tunes comparison AVG method looks as the 

best because it uses all of the repetitions data to give the 

overall tunes similarity result. MIN approach for the same 

data gives the minimal value, which means that only one 

repetitions pair comparison is used, even when there are 

lots of repetitions in tunes being compared, it is too few to 

give a comprehansive result. AVGk approach uses more 

than one pair of repetitions comparison results, but not all 

of them. 

B. Tune Comparison to Itself 

Here we consider another example when tune A is 

compared to itself. Fig. 11 shows the results of those 

comparisons. In Table II methods results comparison 

three methods results comparison are represented. 

 

Figure 11. Tune comparison to itself example. 

TABLE II. METHODS RESULTS COMPARISON 

Type Result Comment 

AVG 2.00 INACCEPTABLE 

MIN 0.00 OK 

AVGk 0.00 OK 
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When tune is compared to itself, AVG method gives a 

non-zero result which is inacceptable, because tune is 

always maximally similar to itself, so the difference must 

be zero. MIN approach always will give zero value 

because values on main diagonal always equal to zero. 

AVGk approach also always gives zero because k 

elements that are being taken into account are exactly all 

zeros from main diagonal.  

As a conclusion we can say that AVGk approach is the 

best among described three approaches because it 

behaves as a trade-off, trying to consider as much 

repetitions comparisons as possible, and not breaking the 

requirement of zero difference for tune comparison to 

itself. 

IV. EXPERIMENTS AND DISCUSSIONS 

We selected seven famous classical music pieces for 

our experiments. Table III shows the selected tunes and 

their short names. We use the short names hereafter in 

this paper. Seven pieces of music were processed with the 

method described in this paper. 

TABLE III. TARGET MUSIC PIECES USED IN THE WORK 

Name Description 

V Four Seasons: Summer 3rd movement by Vivaldi, [7, 8] 

B 
Air on G string Orchestral Suite No3 in D major by Bach, 
[9] 

C Etude Op. 25 No. 11 by Chopin, [10, 11] 

S Gnossienne 4 by Satie, [12, 13] 

M Meditation for Thais by Massenet, [14] 

AH Bugler's Holiday by Anderson, [15] 

AP Plink Plank Plunk by Anderson, [16] 

Table IV shows the repetitions in the musics scores we 

used to calculate tunes descriptors for terget music pieces 

and their performances time in CD. For example, for V 

tune the number of bars and the performance times of 

each part are as follows: from the 10th to 17th bar and 

from the 101th to 108th bar are the same. Performed from 

12.5 to 22.0 seconds and from 122.0 to 132.0 seconds 

accordingly. 

TABLE IV. REPETITIONS IN TARGET MUSIC PIECES 

Tune Nr. Repetition (bar) Performance (seconds) 

V 1 10 – 17; 101 – 108 12.5 – 22.0; 122.0 – 132.0 

B 
1 1 – 6; 7 – 12 0 – 43.2; 47.2 – 90.1 

2 13 –24; 25 –36 94.6 – 185.0; 186.5 – 278.3 

C 
1 

5 – 7.5; 13 – 15.5; 69 

– 71.5; 77 – 79.5; 23 – 
25.5; 31 – 33.5 

23.9 – 30.5; 38.6 – 46.5; 

151.6 – 159.1; 167.8 – 
176.0; 58.5 – 66.5; 75.0 – 

83.0 

2 5 – 15.5; 69 – 79.5 23.9 – 46.5; 151.6 – 176.0 

S 

1 11 – 12; 24 – 25 58.1 – 68.6; 133.4 – 146.7 

2 13; 15 69.2 – 74.5; 80.6 – 85.7 

3 
26 – 27; 28 – 29 147.4 – 159.2; 160.0 – 

172.7 

4 
19 – 20; 31 – 32 102.5 – 114.4; 180.1 – 

195.4 

5 14; 17 74.5 – 79.7; 91.3 – 96.8 

6 18–20; 30–32 97.1 – 113.2; 173.6 – 195.1 

Tune Nr. Repetition (bar) Performance (seconds) 

M 

1 3 – 10; 40 – 47 11.3 – 47.1; 174.5 – 211.1 

2 15 – 20.5; 52 – 57.5 63.9 – 96.7; 229.9 – 258.8 

3 
3 – 4; 11 – 12; 40 – 41 11.3 – 19.0; 47.8 – 56.4; 

175.1 – 182.1 

AH 

1 9 – 22.5; 35 – 38.5 5.7 – 16.1; 16.4 – 28 

2 59 – 74; 141 – 156 43.0 – 54.6; 104.0 – 116 

3 75 – 88; 157 – 170 54.8 – 64.8; 116.3 – 126.3 

4 97 – 104; 113 – 120 70.1 – 75.7; 83.0 – 87.9 

AP 

1 

4.5 – 19; 20.5 – 19; 

37.5 – 52; 37.5 – 52; 

75.5 – 90; 107.5 – 
122; 123.5 – 122 

3.1 – 15.4; 15.9 – 27.2; 

40.1 – 50.7; 62.4 – 72.9; 

99.6 – 110.5; 122.0 – 
133.4; 133.5 – 143.1 

2 
21 – 36; 53 – 36; 91 – 

106 

27.4 – 38.9; 51.0 – 62.0; 

110.9 – 121.7 

3 55 – 70; 55 – 70 74.0 – 85.0; 85.2 – 96.4 

Fig. 12 represents the color scale, where red color 

means dissimilarity and green color means high similarity. 

Fig. 13 shows repetition to repetition comparison results 

in color.  

 

Figure 12. Color scale. 

As expected, the main diagonal is green because every 

repetition is maximally similar to itself. By solid lines we 

separate tunes. Dotted lines separate repetitions within 

tune. 

In Fig. 13 we can see repetitions comparison between 

tunes, as well as within tunes. We may notice that some 

music pieces have dissimilar repetitions within. For 

example, it can be seen inside (6x6) cells rectangle for S 

tune comparison to itself: there are red and yellow cells. 

For other tunes comparisons to themselves we mainly see 

green cells, that means that repetititons within them are 

very similar. 

 

Figure 13. Tunes descriptors comparison. 

According to comparison between two different tunes, 

we can see various results. Some rectangles mostly 

consist of green cells meaning that tunes are alike, some 

consist mostly of yellow and red cells meaning tunes 

dissimilarity. 
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A. Tunes Comparison Results 

To get overall result for tunes comarison we consider 

all cells within every rectangle and calculate a single 

difference by means of AVGk method. Those tune to tune 

similarity results are shown in Table V and it’s colored 

presentation is shown in Fig. 14. 

Main diagonal is green meaning that every tune is 

similar to itself. Tune S is very different from all other 

tunes, as we can see by red cells on row and line that 

correspond to that tune. S tune is very slow and contains 

many silent fragments and pauses. This fact makes that 

tune very different from all other tunes.  

The same as S, tune C is also somehow different to 

most of the tunes. This etude is performed by piano and 

the tempo is very fast. Such piano recording sounds not 

very similar to orchestral performances as in B and M. 

But it is somehow similar to V and AH, as they sound 

similar because of the speed. Tunes comparison values 

are 0.0029 and 0.0030 correspondigly, and displayed as 

yellow cells. 

Music pieces V, B, M, AH, and AP are very similar to 

each other as we can see from comparison values that are 

between 0.0012 and 0.0019, displayed as green cells. 

These tunes sound similar because they are played by 

orchestra and by quartet, they have similar energetic 

mood. The only exception is B to AP pair (0.0029) that 

sounds just somehow similar because of performance 

mood and small speed difference. 

TABLE V. COMPARISON RESULTS 

 
V B C S M AH AP 

V 0.0000 0.0013 0.0029 0.0082 0.0012 0.0013 0.0018 

B 0.0013 0.0000 0.0057 0.0080 0.0012 0.0016 0.0029 

C 0.0029 0.0057 0.0000 0.0073 0.0042 0.0030 0.0037 

S 0.0082 0.0080 0.0073 0.0000 0.0049 0.0058 0.0042 

M 0.0012 0.0012 0.0042 0.0049 0.0000 0.0012 0.0019 

AH 0.0013 0.0016 0.0030 0.0058 0.0012 0.0000 0.0018 

AP 0.0018 0.0029 0.0037 0.0042 0.0019 0.0018 0.0000 

 
 

 

Figure 14. Target music analysis similarity result. 

V. CONCLUSIONS AND FUTURE WORK 

In this work, we proposed an approach for tunes 

comparison based on repetitions. Information regarding 

repetitions in a piece of music is important since 

repetitions make very significant impression while tunes 

are listened by a human. We provided the way to describe 

tunes in descriptors which contain frequency information 

about repetitions of tunes. Frequency information is 

retrieved by means of a relatively new signal processing 

approach called instantaneous frequency spectrum. 

Further tunes comparison takes this repetitions 

frequencies information from one tune descriptor and 

compares to second tune’s descriptor. As a result we 

obtain the similarity between compared tunes. We used 

seven famous classical music pieces for experiments. 

Results of our experiments show that proposed approach 

gives meaningful information about music pieces 

similarity and it can successfully be used in music signal 

processing tasks, such as preparing a playlist of suggested 

similar musical records, based on recently played tunes. 

In future work we are planning to include repetitions 

lengths to tune’s descriptor and use them as weights while 

calculating tunes similarity. It will prioritize repetitions, 

giving more attention for longer and more frequent 

repetitions. 
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