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Abstract—Connected component labeling (CCL) is a 

mandatory step in image segmentation where each object in 

an image is identified and uniquely labeled. Sequential CCL 

is a time-consuming operation and thus is often implemented 

within parallel processing framework to reduce execution 

time. Several parallel CCL methods have been proposed in 

the literature. Among them are NSZ label equivalence (NSZ-

LE) method and modified 8 directional label selection 

(M8DLS) method. It was shown that M8DLS outperforms 

NSZ-LE and M8DLS is by far the best. In this paper we 

propose a new parallel CCL algorithm termed as HYBRID1 

that hybridizes M8DLS and Kernel C method with some 

modification and show that it runs faster than M8DLS for 

various kinds of images. 

 

Index Terms—connected component labeling, CUDA, GPU, 

parallel 

 

I. INTRODUCTION 

Connected component labeling (CCL) is a mandatory 

step in image segmentation where each object in an 

image is uniquely labeled. Various approaches were 

proposed in the field of CCL. Wu et al. [1] classified 

CCL methods into 3 groups. They are multi-pass, two-

pass, and one-pass methods. Multi-pass method usually 

assumes some kind of local neighborhood to search for 

minimum label within that neighborhood and sometimes 

memorizes label equivalences. This is repeated over 

multiple iterations. In two-pass method, scanning, 

analysis, and labeling steps are usually executed. 

Scanning step assigns an initial label to each pixel and 

records equivalence among labels if necessary while 

searching for neighbors. Analysis step tries to find a final 

label for each label by resolving equivalence chains. 

Finally labeling step assigns a final label to each label. 

One-pass algorithm scans the image from left-top to 

right-bottom only once and gives a new label to unlabeled 

pixel. Then all the pixels connected to that pixel are 

searched and are assigned the same label. This is repeated 

until no more unlabeled pixels are left. The methods 

mostly used for CCL, regardless of the number of passes 

they adopt, were sequential [2], [3]. Sequential CCL can 

be used successfully in a single CPU system that 

processes a small number of channels of image stream. 

Though sequential CCL is a computationally expensive 

operation, increasing power of CPU enables sequential 
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CCL run in real time for a few input channels. However, 

as the number of channels increases, say up to 32 or 64, it 

becomes almost impossible to process all input streams in 

real time with CPU alone. To overcome this difficulty it 

has been tried to implement CCL in parallel framework 

using graphics processing units (GPUs). 

The usage of GPUs with compute unified device 

architecture (CUDA) developed by NVIDIA opened a 

new research field for the parallel implementation of 

CCL and many other data processing algorithms [4]. The 

implementation of parallel CCL using CUDA and GPUs 

drastically reduced computation time. Among many 

parallel CCL methods using CUDA proposed so far, 

M8DLS is known to perform best. 

In this paper, we present a new hybridized method 

termed as HYBRID1for parallel CCL using CUDA. We 

first modify Kernel C method proposed by Hawick et al. 

[5] to increases efficiency and then combine with 

M8DLS. Modified Kernel C method will be termed as 

MKC. In HYBRID1, M8DLS and MKC will be executed 

at alternate iterations. M8DLS searches for minimum 

label of each object pixel for 8 directions (east, west, 

south, north, and 4 diagonal directions) until background 

pixel is encountered and changes the label of that pixel 

with minimum label found. If the object pixel has 

minimum label already, then that pixel is not processed. 

This process is repeated until all object pixels have 

minimum labels. In MKC, minimum label for each object 

pixel is searched in four directions (east, west, south and 

north) until the background pixel is hit and then the 

object pixel value is relabeled to the minimum value. If 

the object pixel has the minimum value already, then that 

pixel is not processed.  

This paper is organized as follows. In Section II, 

related works for CCL are discussed. Section III presents 

the proposed method. Results are depicted in Section IV 

and Section V concludes the paper. 

II. RELATED WORKS 

Since the early 1980s many researchers have been 

working on fast CCL. Some of these researches were 

based on sequential processing [1], [2], [6] and some 

others within parallel framework [5], [7]. Suzuki et al. [2] 

proposed a sequential CCL, which is quite simple and 

suitable for implementation in hardware. But it is not fast 

enough since the execution time of their method is 

proportional to the number of pixels in connected 
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components in an image, hence making it not suitable for 

images with high resolution. 

Wu et al. [1] proposed the scan based array union-find 

algorithm which is basically an optimized two-pass 

algorithm. The performance of this algorithm in 

accessing the memory pattern in CCL has been 

significantly improved by almost 10 times than that of the 

contour tracing algorithm [6] and other previous methods 

[2]. They mentioned that the only drawback of this 

algorithm is the immense reduction in its efficiency when 

images with small resolution are processed. 

Chang et al. [6] proposed the contour tracing algorithm 

which has a better computational speed than [1], [2] but 

takes more time in accessing the memory pattern.  

Hawick et al. [5] proposed parallel version of the label 

equivalence algorithm using GPUs. Their algorithm 

consists of three basic steps: scanning, analysis and 

labeling. These steps are repeated in a loop until all of the 

connected components are identified and labeled 

correctly. Due to the parallel implementation of CCL this 

algorithm decreases the execution time quite effectively 

but it consumes more memory in using the reference 

array. 

Kalentov et al. [7] proposed two methods. The first 

one is a simple row column unification method where a 

single thread is assigned for each row and column, scans 

each row and column in a predetermined direction, and 

changes the label of each pixel with the minimum label 

found so far along the scan direction. This process is 

repeated until all pixels have minimum labels. The 

second method is the NSZ-LE where a single thread is 

assigned to each pixel, searches for immediate 4 

neighbors for minimum label, constructs the label 

equivalence chain, and does relabeling by resolving 

chains. 

Soh et al. [8], [9] proposed 8 directional label 

equivalence (8DLS) method where the minimum label is 

searched in all 8 neighbors rather than 4 immediate 

neighbors of the focused pixel until background pixel is 

encountered. Each object pixel is assigned a single thread. 

This process is repeated until all object pixels have 

minimum labels.  

Soh et al. [9] proposed M8DLS, an improved version 

of 8DLS, where the search space has been decreased by 

not processing the focused pixel if it already has 

minimum label. 

III. THE PROPOSED METHOD 

The proposed method HYBRID1 is a multi-pass 

parallel CCL method and is the combination of M8DLS 

and MKC. First, we describe M8DLS and MKC in detail 

and then present HYBRID1 below. 

A. M8DLS Method 

The basic algorithm for M8DLS [9] is same as that of 

8DLS [8]. The pseudo code for the M8DLS method is 

given in Algorithm 1. 

Algorithm 1 The M8DLS method in pseudo code 

for i=1 to n iterations do 

  for each pixel p in an image do 

    if  p is an object pixel 

    then it becomes a focused pixel 

            if (i>=2) and (label of p is not the smallest) 

            then apply 8DLS 

            end if 

    end if 

   end for 

if no label change for all the object pixels 

then exit 

end if 

end for 

In Algorithm 1, 8DLS is applied if some conditions are 

met. The pseudo code for the 8DLS algorithm is given in 

Algorithm 2 [8]. 

 

Algorithm 2 The 8DLS method in pseudo code 
for j =1 to n iterations do 

  for each pixel p in an image do 

      if p is an object pixel 

then it becomes a focused pixel 

         for i = 1 to 8 directions do  

            search for minimum label until background pixel is hit 

            and put it in mini 
         end for 

      end if 

      take minimum label m among mini , 1<= i <= 8 and relabel 

the focused pixel with label m 

  end for 

  if no label change for all the object pixels 

then exit 

end if 
end for 

 

M8DLS modifies 8DLS such that after second iteration 

the label of the focused pixel is checked if it is the 

smallest so far. If it is not, 8DLS is applied. Otherwise, 

no further processing is performed, thus saving 

computation time. Checking for smallest is done as 

follows. Let initial label image array be LABEL. Then 

after assigning initial label sequentially to an image, 

LABEL (i) becomes i, for i = 0 to (total number of pixels 

in the image) - 1. For focused pixel p having a label j, we 

check if LABEL (j) is still j. If it is, we say that j is the 

smallest label so far. Otherwise it is not the smallest since 

it has already been changed, thus having a possibility of 

further change. If LABEL (j) is changed to something 

else later, then we apply 8DLS again to pixels having 

label j. Algorithm stops when there is no label change for 

all the object pixels in the image. The running appearance 

of M8DLS for initial label array is exactly same as that of 

8DLS. However, many pixels will not be processed while 

producing the same results in later iterations. In Fig. 1 we 

show a running example of M8DLS. Fig. 1(a) is a sample 

input image that has been uniquely labeled according to 

the indices of the pixels in the image. Here white pixel is 

an object pixel and the shaded is a background pixel. 
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Assuming 8-connectivity, there are two objects. A single 

thread is assigned to each pixel and the algorithm is 

performed only on object pixels. Fig. 1(b), Fig. 1(c), and 

Fig. 1(d) show the results obtained after first, second, and 

third iterations respectively. To see how it works, let us 

consider the pixel with label 27 in Fig. 1(a). We search 

for 8 directions and find that the label 9(underlined) in 

45° diagonal direction is the minimum. Thus the label 27 

is changed to 9 as in Fig. 1(b) at the same location. For 

this example 3 iterations were enough to correctly label 

all the object pixels.  

 

0 1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 16 17 18 19 

20 21 22 23 24 25 26 27 28 29 

30 31 32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 48 49 

50 51 52 53 54 55 56 57 58 59 

 (a) 

0 1 2 3 4 5 6 7 8 8 

10 11 1 3 14 15 16 6 8 19 

20 3 12 23 24 25 8 9 28 18 

30 31 12 22 34 35 36 17 27 39 

40 32 12 43 44 45 37 17 26 49 

32 33 12 53 54 55 29 57 38 26 

 (b) 

0 1 2 1 4 5 6 7 6 8 

10 11 1 1 14 15 16 6 6 19 

20 1 1 23 24 25 6 6 28 18 

30 31 1 12 34 35 36 6 9 39 

40 12 1 43 44 45 17 6 8 49 

12 12 1 53 54 55 17 57 17 8 

 (c) 

0 1 2 1 4 5 6 7 6 6 

10 11 1 1 14 15 16 6 6 19 

20 1 1 23 24 25 6 6 28 6 

30 31 1 1 34 35 36 6 6 39 

40 1 1 43 44 45 6 6 6 49 

1 1 1 53 54 55 6 57 6 6 

 (d) 

Figure 1.  Running example of M8DLS method. (a) initial label, 
(b) after first iteration, (c) after second iteration, and (d) after 

third iteration  

In Fig. 1(c), we put the underline for object pixels that 

pass the “smallest” check described above. For left and 

right objects, 9 out of 13 and 8 out of 16 pixels were not 

processed respectively, thus saving a great deal of 

computation time. 

In M8DLS, “smallest” label check is performed after 

two iterations. This number was chosen empirically. We 

conducted many experiments for various numbers of 

iterations and for various kinds of test data and found that 

after two iterations most of object pixels already has 

smallest label they ought to have due to deep 8-

directional search characteristic of our method. 

B. MKC Method 

The basic algorithm for MKC is that of Kernel C 

method proposed by Hawick et al. [5]. The pseudo code 

for the MKC method is given in Algorithm 3.  

 

Algorithm 3 The MKC method in pseudo code 

for j=1 to n iterations do 

  for each pixel p in an image do 

    if  p is an object pixel 

    then it becomes a focused pixel 

      if (i>=2) and (label of p is not the smallest) 
         for i = 1 to 4 directions do  

            search for minimum label until background pixel is hit 

            and put it in mini 
         end for 

         take minimum label m among mini , 1<= i <= 4 and 

relabel the focused pixel with label m 

end if 

end if 

  end for 

if no label change for all the object pixels 

then exit 

end if 

end for 

Kernel C method proposed by Hawick et al. [5] 

assigns a single thread to each row and column and 

searches for minimum label of each pixel, and relabel that 

pixel if necessary. The modification adopted in MKC is 

twofold. First, we assign a single thread to each object 

pixel instead of each row and column, thus increasing the 

degree of parallelism. Second, similarity criterion used in 

M8DLS is employed to reduce search space. Fig. 2 shows 

a running example of the MKC method. We used the 

same image sample as in Fig. 1(a). As can be seen in Fig. 

2(d), 3 iterations are not enough to get correct labels with 

MKC alone. However, if it is mixed with M8DLS, the 

result gets better drastically. 

0 1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 16 17 18 19 

20 21 22 23 24 25 26 27 28 29 

30 31 32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 48 49 

50 51 52 53 54 55 56 57 58 59 

(a) 

0 1 2 3 4 5 6 7 8 8 
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10 11 12 3 14 15 16 17 8 19 

20 21 12 23 24 25 26 17 28 29 

30 31 12 32 34 35 36 17 37 39 

40 41 12 43 44 45 46 17 38 49 

50 41 12 53 54 55 46 57 38 58 

 (b) 

0 1 2 3 4 5 6 7 8 8 

10 11 3 3 14 15 16 8 8 19 

20 12 12 23 24 25 17 17 28 29 

30 31 12 12 34 35 36 17 17 39 

40 12 12 43 44 45 17 17 17 49 

12 12 12 53 54 55 46 57 37 38 

(c) 

0 1 2 3 4 5 6 7 8 8 

10 11 3 3 14 15 16 8 8 19 

20 12 3 23 24 25 17 8 28 29 

30 31 3 12 34 35 36 8 17 39 

40 12 3 43 44 45 17 8 17 49 

12 12 3 53 54 55 17 57 17 37 

 (d) 

 

Figure 2.  Running example of MKC method. (a) Initial label, (b) 

After first iteration, (c) After second iteration, and (d) After third 
iteration 

C. HYBRID 1 Method 

As was mentioned earlier, HYBRID1 is the 

combination of M8DLS and MKC methods. Two 

methods are executed at alternate iterations until all 

object pixels are correctly labeled. The pseudo code for 

HYBRID1 is described in Algorithm 4. 
 

Algorithm 4 The HYBRID1 method in pseudo code 

for i=1 to n iterations do 

  for each pixel p in an image do 

    if  p is an object pixel 

    then it becomes a focused pixel 

         if i % 2 == 0   

         then apply M8DLS 

         else apply MKC 

         end if 

    end if 

end for 

if no label change for all the object pixels 

then exit 

end if 

end for 

 

In the algorithm, M8DLS and MKC are executed at 

even and odd iterations, respectively. Algorithm stops 

when there is no label change for all the object pixels. 

The working example of HYBRID1 is shown in Fig. 3.  

 

0 1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 16 17 18 19 

20 21 22 23 24 25 26 27 28 29 

30 31 32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 48 49 

50 51 52 53 54 55 56 57 58 59 

 (a) 

0 1 2 3 4 5 6 7 8 8 

10 11 1 3 14 15 16 6 8 19 

20 3 12 23 24 25 8 9 28 18 

30 31 12 22 34 35 36 17 27 39 

40 32 12 43 44 45 37 17 26 49 

32 33 12 53 54 55 29 57 38 26 

 (b) 

0 1 2 3 4 5 6 7 8 8 

10 11 1 1 14 15 16 6 6 19 

20 3 1 23 24 25 8 6 28 18 

30 31 1 12 34 35 36 6 17 39 

40 12 1 43 44 45 17 6 17 49 

12 12 1 53 54 55 29 57 26 26 

 (c) 

0 1 2 1 4 5 6 7 6 6 

10 11 1 1 14 15 16 6 6 19 

20 1 1 23 24 25 6 6 28 6 

30 31 1 1 34 35 36 6 6 39 

40 1 1 43 44 45 6 6 6 49 

1 1 1 53 54 55 6 57 6 6 

 (d) 

 

Figure 3.  Running example of  HYBRID1 method. (a) initial label, 
(b) after first iteration (M8DLS), (c) after second iteration (MKC), 

and (d) after third iteration (M8DLS) 

Here it can be seen that M8DLS and MKC are applied 

alternatively per iteration. Fig. 3(a) is the initial label 

image which is same as the one in Fig. 1(a). Fig. 3(b), 

3(c) and 3(d) are labeled images after applying M8DLS, 

MKC and M8DLS, respectively. 

IV. EXPERIMENTAL RESULTS 

The system specification used for the experiment is as 

follows. 

- CPU: Intel i7, 3.40 GHz 

- OS: Windows 7 
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- GPU: NVIDIA Geforce GTX 550 Ti with 192 cores. 

 

For the experiment, 8 types of images were used. All are 

of size 320 x 240 with 8 bits/pixel. They are, 

 

- B1, B2, B3, B4, and B5: Images with occupancy ratio 

of 0.07, 0.17, 0.27, 0.36 and 0.46 respectively 

- Spiral: Image with spiral pattern 

- Random1 and Random2: Images that were generated 

programmatically using the random number generator 

and have the occupancy ratio of 0.1 and 0.5 respectively. 

 

We compared the performance of NSZ-LE [7], 

M8DLS [9] and the proposed method (HYBRID1) in 

terms of execution time and the number iterations 

required. Table I shows the comparison results of 

execution time. We run each algorithm 100 times on each 

test image and take the average execution time. 

Irrespective of the methods tested, when we go from B1 

to B5, execution time increases due to increasing 

occupancies. The same observation can be made when we 

go from Random1 to Random2. Among all the images, 

Spiral requires far more computation due to its complex 

shape. 

For B1 through B5, Random1, and Random2, M8DLS 

performs around 3 times faster than NSZ-LE. For Spiral, 

M8DLS performs more than 10 times faster than NSZ-LE. 

HYBRID1 shows even better performance than M8DLS 

for all kinds of images with 2%~3% average speedup. 

This seemingly small improvement will count when 

image size gets larger and we have fewer GPU cores. 

This improvement of HYBRID1 over M8DLS comes 

from the fact that it searches only 4-connected neighbors 

at alternate iterations instead of 8-connected neighbors 

and this alternate searching is enough for various kinds of 

images to produce the same result obtained by M8DLS. 

TABLE I. COMPARISON OF EXECUTION TIME (UNIT: SECOND) 

Images NSZ-LE M8DLS HYBRID1 

B1 0.026 0.00793 0.00772 

B2 0.028 0.00821 0.00813 

B3 0.030 0.00851 0.00832 

B4 0.031 0.00874 0.00858 

B5 0.034 0.00913 0.00899 

Spiral 0.135 0.0099 0.00887 

Random1 0.0297 0.00803 0.00782 

Random2 0.0304 0.00813 0.00796 

 

Table II shows the number of iterations that were taken 

by each method for different test images. M8DLS and 

HYBRID1 take exactly the same number of iterations, 

whereas NSZ-LE consumes far more iterations. This is 

because NSZ-LE only looks at 4 immediate neighbors, 

whereas M8DLS considers all 8-connected neighbors and 

HYBRID1 processes 8-connected and 4-connected 

neighbors alternatively. Spiral shows extreme 

performance difference. NSZ-LE iterates around 22 times 

more than the proposed method and this causes far more 

computation time.  

In conclusion, HYBRID1 shows better performance 

than M8DLS in execution time while maintaining the 

same number of iterations.  

TABLE II. COMPARISON OF NUMBER OF ITERATIONS REQUIRED 

Images NSZ-LE M8DLS HYBRID1 

B1 6 4 4 

B2 41 6 6 

B3 41 6 6 

B4 41 6 6 

B5 41 6 6 

Spiral 344 16 16 

Random1 6 6 6 

Random2 6 6 6 

 

V. DISCUSSION 

CCL is an important step in image segmentation and is 

often implemented in parallel framework to reduce 

execution time. Soh et al. [9] compared NSZ-LE [7] with 

8DLS [8] and M8DLS, and showed that both 8DLS and 

M8DLS outperformed NSZ-LE and M8DLS performs 

better than 8DLS. In this paper, we proposed a hybridized 

parallel CCL method HYBRID1 where we modify Kernel 

C method [5] and combine it with M8DLS. We showed 

that HYBRID1 performs better than M8DLS for various 

kinds of images.  
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