
A Hybrid Approach to Parallel Connected

Component Labeling Using CUDA

Youngsung Soh, Hadi Ashraf, Yongsuk Hae, and Intaek Kim
Department of Information and Communication Engineering, Myongji University, Yongin, South Korea

Email: soh@mju.ac.kr, nothan111@gmail.com, wise_sunys@nate.com, kit@mju.ac.kr

Abstract—Connected component labeling (CCL) is a

mandatory step in image segmentation where each object in

an image is identified and uniquely labeled. Sequential CCL

is a time-consuming operation and thus is often implemented

within parallel processing framework to reduce execution

time. Several parallel CCL methods have been proposed in

the literature. Among them are NSZ label equivalence (NSZ-

LE) method and modified 8 directional label selection

(M8DLS) method. It was shown that M8DLS outperforms

NSZ-LE and M8DLS is by far the best. In this paper we

propose a new parallel CCL algorithm termed as HYBRID1

that hybridizes M8DLS and Kernel C method with some

modification and show that it runs faster than M8DLS for

various kinds of images.

Index Terms—connected component labeling, CUDA, GPU,

parallel

I. INTRODUCTION

Connected component labeling (CCL) is a mandatory

step in image segmentation where each object in an

image is uniquely labeled. Various approaches were

proposed in the field of CCL. Wu et al. [1] classified

CCL methods into 3 groups. They are multi-pass, two-

pass, and one-pass methods. Multi-pass method usually

assumes some kind of local neighborhood to search for

minimum label within that neighborhood and sometimes

memorizes label equivalences. This is repeated over

multiple iterations. In two-pass method, scanning,

analysis, and labeling steps are usually executed.

Scanning step assigns an initial label to each pixel and

records equivalence among labels if necessary while

searching for neighbors. Analysis step tries to find a final

label for each label by resolving equivalence chains.

Finally labeling step assigns a final label to each label.

One-pass algorithm scans the image from left-top to

right-bottom only once and gives a new label to unlabeled

pixel. Then all the pixels connected to that pixel are

searched and are assigned the same label. This is repeated

until no more unlabeled pixels are left. The methods

mostly used for CCL, regardless of the number of passes

they adopt, were sequential [2], [3]. Sequential CCL can

be used successfully in a single CPU system that

processes a small number of channels of image stream.

Though sequential CCL is a computationally expensive

operation, increasing power of CPU enables sequential

Manuscript received July 11, 2013; revised November 11, 2013.

CCL run in real time for a few input channels. However,

as the number of channels increases, say up to 32 or 64, it

becomes almost impossible to process all input streams in

real time with CPU alone. To overcome this difficulty it

has been tried to implement CCL in parallel framework

using graphics processing units (GPUs).

The usage of GPUs with compute unified device

architecture (CUDA) developed by NVIDIA opened a

new research field for the parallel implementation of

CCL and many other data processing algorithms [4]. The

implementation of parallel CCL using CUDA and GPUs

drastically reduced computation time. Among many

parallel CCL methods using CUDA proposed so far,

M8DLS is known to perform best.

In this paper, we present a new hybridized method

termed as HYBRID1for parallel CCL using CUDA. We

first modify Kernel C method proposed by Hawick et al.

[5] to increases efficiency and then combine with

M8DLS. Modified Kernel C method will be termed as

MKC. In HYBRID1, M8DLS and MKC will be executed

at alternate iterations. M8DLS searches for minimum

label of each object pixel for 8 directions (east, west,

south, north, and 4 diagonal directions) until background

pixel is encountered and changes the label of that pixel

with minimum label found. If the object pixel has

minimum label already, then that pixel is not processed.

This process is repeated until all object pixels have

minimum labels. In MKC, minimum label for each object

pixel is searched in four directions (east, west, south and

north) until the background pixel is hit and then the

object pixel value is relabeled to the minimum value. If

the object pixel has the minimum value already, then that

pixel is not processed.

This paper is organized as follows. In Section II,

related works for CCL are discussed. Section III presents

the proposed method. Results are depicted in Section IV

and Section V concludes the paper.

II. RELATED WORKS

Since the early 1980s many researchers have been

working on fast CCL. Some of these researches were

based on sequential processing [1], [2], [6] and some

others within parallel framework [5], [7]. Suzuki et al. [2]

proposed a sequential CCL, which is quite simple and

suitable for implementation in hardware. But it is not fast

enough since the execution time of their method is

proportional to the number of pixels in connected

International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013

130©2013 Engineering and Technology Publishing
doi: 10.12720/ijsps.1.2.130-135

mailto:nothan111@gmail.com

components in an image, hence making it not suitable for

images with high resolution.

Wu et al. [1] proposed the scan based array union-find

algorithm which is basically an optimized two-pass

algorithm. The performance of this algorithm in

accessing the memory pattern in CCL has been

significantly improved by almost 10 times than that of the

contour tracing algorithm [6] and other previous methods

[2]. They mentioned that the only drawback of this

algorithm is the immense reduction in its efficiency when

images with small resolution are processed.

Chang et al. [6] proposed the contour tracing algorithm

which has a better computational speed than [1], [2] but

takes more time in accessing the memory pattern.

Hawick et al. [5] proposed parallel version of the label

equivalence algorithm using GPUs. Their algorithm

consists of three basic steps: scanning, analysis and

labeling. These steps are repeated in a loop until all of the

connected components are identified and labeled

correctly. Due to the parallel implementation of CCL this

algorithm decreases the execution time quite effectively

but it consumes more memory in using the reference

array.

Kalentov et al. [7] proposed two methods. The first

one is a simple row column unification method where a

single thread is assigned for each row and column, scans

each row and column in a predetermined direction, and

changes the label of each pixel with the minimum label

found so far along the scan direction. This process is

repeated until all pixels have minimum labels. The

second method is the NSZ-LE where a single thread is

assigned to each pixel, searches for immediate 4

neighbors for minimum label, constructs the label

equivalence chain, and does relabeling by resolving

chains.

Soh et al. [8], [9] proposed 8 directional label

equivalence (8DLS) method where the minimum label is

searched in all 8 neighbors rather than 4 immediate

neighbors of the focused pixel until background pixel is

encountered. Each object pixel is assigned a single thread.

This process is repeated until all object pixels have

minimum labels.

Soh et al. [9] proposed M8DLS, an improved version

of 8DLS, where the search space has been decreased by

not processing the focused pixel if it already has

minimum label.

III. THE PROPOSED METHOD

The proposed method HYBRID1 is a multi-pass

parallel CCL method and is the combination of M8DLS

and MKC. First, we describe M8DLS and MKC in detail

and then present HYBRID1 below.

A. M8DLS Method

The basic algorithm for M8DLS [9] is same as that of

8DLS [8]. The pseudo code for the M8DLS method is

given in Algorithm 1.

Algorithm 1 The M8DLS method in pseudo code

for i=1 to n iterations do

 for each pixel p in an image do

 if p is an object pixel

 then it becomes a focused pixel

 if (i>=2) and (label of p is not the smallest)

 then apply 8DLS

 end if

 end if

 end for

if no label change for all the object pixels

then exit

end if

end for

In Algorithm 1, 8DLS is applied if some conditions are

met. The pseudo code for the 8DLS algorithm is given in

Algorithm 2 [8].

Algorithm 2 The 8DLS method in pseudo code
for j =1 to n iterations do

 for each pixel p in an image do

 if p is an object pixel

then it becomes a focused pixel

 for i = 1 to 8 directions do

 search for minimum label until background pixel is hit

 and put it in mini
 end for

 end if

 take minimum label m among mini , 1<= i <= 8 and relabel

the focused pixel with label m

 end for

 if no label change for all the object pixels

then exit

end if
end for

M8DLS modifies 8DLS such that after second iteration

the label of the focused pixel is checked if it is the

smallest so far. If it is not, 8DLS is applied. Otherwise,

no further processing is performed, thus saving

computation time. Checking for smallest is done as

follows. Let initial label image array be LABEL. Then

after assigning initial label sequentially to an image,

LABEL (i) becomes i, for i = 0 to (total number of pixels

in the image) - 1. For focused pixel p having a label j, we

check if LABEL (j) is still j. If it is, we say that j is the

smallest label so far. Otherwise it is not the smallest since

it has already been changed, thus having a possibility of

further change. If LABEL (j) is changed to something

else later, then we apply 8DLS again to pixels having

label j. Algorithm stops when there is no label change for

all the object pixels in the image. The running appearance

of M8DLS for initial label array is exactly same as that of

8DLS. However, many pixels will not be processed while

producing the same results in later iterations. In Fig. 1 we

show a running example of M8DLS. Fig. 1(a) is a sample

input image that has been uniquely labeled according to

the indices of the pixels in the image. Here white pixel is

an object pixel and the shaded is a background pixel.

International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013

131©2013 Engineering and Technology Publishing

Assuming 8-connectivity, there are two objects. A single

thread is assigned to each pixel and the algorithm is

performed only on object pixels. Fig. 1(b), Fig. 1(c), and

Fig. 1(d) show the results obtained after first, second, and

third iterations respectively. To see how it works, let us

consider the pixel with label 27 in Fig. 1(a). We search

for 8 directions and find that the label 9(underlined) in

45° diagonal direction is the minimum. Thus the label 27

is changed to 9 as in Fig. 1(b) at the same location. For

this example 3 iterations were enough to correctly label

all the object pixels.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

 (a)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 12 23 24 25 8 9 28 18

30 31 12 22 34 35 36 17 27 39

40 32 12 43 44 45 37 17 26 49

32 33 12 53 54 55 29 57 38 26

 (b)

0 1 2 1 4 5 6 7 6 8

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 18

30 31 1 12 34 35 36 6 9 39

40 12 1 43 44 45 17 6 8 49

12 12 1 53 54 55 17 57 17 8

 (c)

0 1 2 1 4 5 6 7 6 6

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 6

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6

 (d)

Figure 1. Running example of M8DLS method. (a) initial label,
(b) after first iteration, (c) after second iteration, and (d) after

third iteration

In Fig. 1(c), we put the underline for object pixels that

pass the “smallest” check described above. For left and

right objects, 9 out of 13 and 8 out of 16 pixels were not

processed respectively, thus saving a great deal of

computation time.

In M8DLS, “smallest” label check is performed after

two iterations. This number was chosen empirically. We

conducted many experiments for various numbers of

iterations and for various kinds of test data and found that

after two iterations most of object pixels already has

smallest label they ought to have due to deep 8-

directional search characteristic of our method.

B. MKC Method

The basic algorithm for MKC is that of Kernel C

method proposed by Hawick et al. [5]. The pseudo code

for the MKC method is given in Algorithm 3.

Algorithm 3 The MKC method in pseudo code

for j=1 to n iterations do

 for each pixel p in an image do

 if p is an object pixel

 then it becomes a focused pixel

 if (i>=2) and (label of p is not the smallest)
 for i = 1 to 4 directions do

 search for minimum label until background pixel is hit

 and put it in mini
 end for

 take minimum label m among mini , 1<= i <= 4 and

relabel the focused pixel with label m

end if

end if

 end for

if no label change for all the object pixels

then exit

end if

end for

Kernel C method proposed by Hawick et al. [5]

assigns a single thread to each row and column and

searches for minimum label of each pixel, and relabel that

pixel if necessary. The modification adopted in MKC is

twofold. First, we assign a single thread to each object

pixel instead of each row and column, thus increasing the

degree of parallelism. Second, similarity criterion used in

M8DLS is employed to reduce search space. Fig. 2 shows

a running example of the MKC method. We used the

same image sample as in Fig. 1(a). As can be seen in Fig.

2(d), 3 iterations are not enough to get correct labels with

MKC alone. However, if it is mixed with M8DLS, the

result gets better drastically.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

(a)

0 1 2 3 4 5 6 7 8 8

International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013

132©2013 Engineering and Technology Publishing

10 11 12 3 14 15 16 17 8 19

20 21 12 23 24 25 26 17 28 29

30 31 12 32 34 35 36 17 37 39

40 41 12 43 44 45 46 17 38 49

50 41 12 53 54 55 46 57 38 58

 (b)

0 1 2 3 4 5 6 7 8 8

10 11 3 3 14 15 16 8 8 19

20 12 12 23 24 25 17 17 28 29

30 31 12 12 34 35 36 17 17 39

40 12 12 43 44 45 17 17 17 49

12 12 12 53 54 55 46 57 37 38

(c)

0 1 2 3 4 5 6 7 8 8

10 11 3 3 14 15 16 8 8 19

20 12 3 23 24 25 17 8 28 29

30 31 3 12 34 35 36 8 17 39

40 12 3 43 44 45 17 8 17 49

12 12 3 53 54 55 17 57 17 37

 (d)

Figure 2. Running example of MKC method. (a) Initial label, (b)

After first iteration, (c) After second iteration, and (d) After third
iteration

C. HYBRID 1 Method

As was mentioned earlier, HYBRID1 is the

combination of M8DLS and MKC methods. Two

methods are executed at alternate iterations until all

object pixels are correctly labeled. The pseudo code for

HYBRID1 is described in Algorithm 4.

Algorithm 4 The HYBRID1 method in pseudo code

for i=1 to n iterations do

 for each pixel p in an image do

 if p is an object pixel

 then it becomes a focused pixel

 if i % 2 == 0

 then apply M8DLS

 else apply MKC

 end if

 end if

end for

if no label change for all the object pixels

then exit

end if

end for

In the algorithm, M8DLS and MKC are executed at

even and odd iterations, respectively. Algorithm stops

when there is no label change for all the object pixels.

The working example of HYBRID1 is shown in Fig. 3.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

 (a)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 12 23 24 25 8 9 28 18

30 31 12 22 34 35 36 17 27 39

40 32 12 43 44 45 37 17 26 49

32 33 12 53 54 55 29 57 38 26

 (b)

0 1 2 3 4 5 6 7 8 8

10 11 1 1 14 15 16 6 6 19

20 3 1 23 24 25 8 6 28 18

30 31 1 12 34 35 36 6 17 39

40 12 1 43 44 45 17 6 17 49

12 12 1 53 54 55 29 57 26 26

 (c)

0 1 2 1 4 5 6 7 6 6

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 6

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6

 (d)

Figure 3. Running example of HYBRID1 method. (a) initial label,
(b) after first iteration (M8DLS), (c) after second iteration (MKC),

and (d) after third iteration (M8DLS)

Here it can be seen that M8DLS and MKC are applied

alternatively per iteration. Fig. 3(a) is the initial label

image which is same as the one in Fig. 1(a). Fig. 3(b),

3(c) and 3(d) are labeled images after applying M8DLS,

MKC and M8DLS, respectively.

IV. EXPERIMENTAL RESULTS

The system specification used for the experiment is as

follows.

- CPU: Intel i7, 3.40 GHz

- OS: Windows 7

International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013

133©2013 Engineering and Technology Publishing

- GPU: NVIDIA Geforce GTX 550 Ti with 192 cores.

For the experiment, 8 types of images were used. All are

of size 320 x 240 with 8 bits/pixel. They are,

- B1, B2, B3, B4, and B5: Images with occupancy ratio

of 0.07, 0.17, 0.27, 0.36 and 0.46 respectively

- Spiral: Image with spiral pattern

- Random1 and Random2: Images that were generated

programmatically using the random number generator

and have the occupancy ratio of 0.1 and 0.5 respectively.

We compared the performance of NSZ-LE [7],

M8DLS [9] and the proposed method (HYBRID1) in

terms of execution time and the number iterations

required. Table I shows the comparison results of

execution time. We run each algorithm 100 times on each

test image and take the average execution time.

Irrespective of the methods tested, when we go from B1

to B5, execution time increases due to increasing

occupancies. The same observation can be made when we

go from Random1 to Random2. Among all the images,

Spiral requires far more computation due to its complex

shape.

For B1 through B5, Random1, and Random2, M8DLS

performs around 3 times faster than NSZ-LE. For Spiral,

M8DLS performs more than 10 times faster than NSZ-LE.

HYBRID1 shows even better performance than M8DLS

for all kinds of images with 2%~3% average speedup.

This seemingly small improvement will count when

image size gets larger and we have fewer GPU cores.

This improvement of HYBRID1 over M8DLS comes

from the fact that it searches only 4-connected neighbors

at alternate iterations instead of 8-connected neighbors

and this alternate searching is enough for various kinds of

images to produce the same result obtained by M8DLS.

TABLE I. COMPARISON OF EXECUTION TIME (UNIT: SECOND)

Images NSZ-LE M8DLS HYBRID1

B1 0.026 0.00793 0.00772

B2 0.028 0.00821 0.00813

B3 0.030 0.00851 0.00832

B4 0.031 0.00874 0.00858

B5 0.034 0.00913 0.00899

Spiral 0.135 0.0099 0.00887

Random1 0.0297 0.00803 0.00782

Random2 0.0304 0.00813 0.00796

Table II shows the number of iterations that were taken

by each method for different test images. M8DLS and

HYBRID1 take exactly the same number of iterations,

whereas NSZ-LE consumes far more iterations. This is

because NSZ-LE only looks at 4 immediate neighbors,

whereas M8DLS considers all 8-connected neighbors and

HYBRID1 processes 8-connected and 4-connected

neighbors alternatively. Spiral shows extreme

performance difference. NSZ-LE iterates around 22 times

more than the proposed method and this causes far more

computation time.

In conclusion, HYBRID1 shows better performance

than M8DLS in execution time while maintaining the

same number of iterations.

TABLE II. COMPARISON OF NUMBER OF ITERATIONS REQUIRED

Images NSZ-LE M8DLS HYBRID1

B1 6 4 4

B2 41 6 6

B3 41 6 6

B4 41 6 6

B5 41 6 6

Spiral 344 16 16

Random1 6 6 6

Random2 6 6 6

V. DISCUSSION

CCL is an important step in image segmentation and is

often implemented in parallel framework to reduce

execution time. Soh et al. [9] compared NSZ-LE [7] with

8DLS [8] and M8DLS, and showed that both 8DLS and

M8DLS outperformed NSZ-LE and M8DLS performs

better than 8DLS. In this paper, we proposed a hybridized

parallel CCL method HYBRID1 where we modify Kernel

C method [5] and combine it with M8DLS. We showed

that HYBRID1 performs better than M8DLS for various

kinds of images.

ACKNOWLEDGEMENT

This work (Grants No. C0005448) was supported by

Business for Cooperative R&D between Industry,

Academy, and Research Institute funded by Korea Small

and Medium Business Administration in 2012.

REFERENCES

[1] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Analysis & Applications

vol. 12, no. 2, pp. 117-135, 2009.

[2] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-
component labeling based on sequential local operations,”

Computer Vision and Image Understandingm, vol. 89, no. 1, pp.

1-23, 2003.
[3] A. Rosenfeld and A. Kak, Digital Picture Processing, Orlando:

Academic Press, 1982.

[4] R. Farber, CUDA Application Design and Development, Waltham:
Elsevier, 2011.

[5] K. Hawick, A. Leist, and D. Playne, “Parallel graph component

labeling with GPUs and CUDA,” Parallel Computing, vol. 36, no.
12, 2010.

International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013

134©2013 Engineering and Technology Publishing

[6] F. Chang, C. Chen, and C. Lu, “A linear-time Component-labeling
algorithm using contour tracing technique,” Computer Vision and

Image Understanding, vol. 93, no. 2, pp. 206-220, 2004.

[7] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected
component labeling on a 2D grid using CUDA,” J. Parallel

Distributed Computing, vol. 71, pp. 615-620, 2011.

[8] Y. Soh, H. Ashraf, Y. Hae, and I. Kim, “A simple and fast parallel
connected component labeling using CUDA,” in Proc.

International Conference on Computer Applications and

Information Processing Technology, 2013, pp. 61-64.
[9] Y. Soh, H. Ashraf, Y. Hae, and I. Kim, “Fast parallel connected

component labeling algorithm in CUDA based on 8-directional

label selection,” Journal of Parallel and Distributed Computing,
Elsevier, unpublished.

Hadi Ashraf was born in Lahore, Pakistan in Dec. 8
1988. He got BS in electrical engineering in 2010 from

Govt. University in Lahore, Pakistan. He entered a

Master course in information and communication
engineering in Myongji University in 2012.He joined a

software company in Pakistan in Aug. 2010 and worked

as a software engineer till April 2012.His current interest
of research includes object tracking, stereo vision and parallel

algorithms for image processing.

Youngsung Soh was born in Seoul, Korea in Mar. 4

1956. He got BS in electrical engineering in 1978 from

Seoul National University in Seoul, Korea. He obtained
MS and PhD in computer science from the University of

South Carolina in Columbia, South Carolina, USA in

1986 and 1989, respectively. He served in the Korean
army from June 1980 to Sept. 1982. He worked in

Systems Engineering Research Institute in Korea as a senior researcher

from Sept. 1989 to Feb. 1991. He joined Myongji University in Korea
from Mar. 1991 and is currently a full professor in the Dept. of

Information and Communication Engineering. Some of his publications

are:Y. Soh and Y. Hae,” A New Depth Image Based Rendering with
Local Texture Analysis”, Advanced science letters, Vol. 9, 2012,

pp.173-178.Y. Soh and J. Song,” New Methods for 3D Measurement
for PTZ Camera Control on Road Surface with Linear and Curved

Slopes”, Sensor letters, Vol. 10, No. 5-6, 2012, pp.1320-1325 His

current interest of research includes object tracking, stereo vision, and
parallel algorithms for image processing.Prof. Soh is a member of

Korea Information Processing Society and Korea Signal Processing

Systems Society.

Yongsuk Hae was born in Mokpo, Korea in August 8

1981. He got BS and MS in in formation and
communication engineering from Myongji University in

Yongin, Korea in 2009 and 2012, respectively. He

entered a PhD course in information and communication
engineering in Myongji University in Yongin, Korea in

2012. He served in the Korean army from August 2001 to October 2003.

Since December 2008 he has been working in Nain information
company in Korea as a researcher. Some of his publications are:Y. Soh

and Y. Hae,” A New Depth Image Based Rendering with Local Texture

Analysis”, Advanced science letters, Vol. 9, 2012, pp.173-178 Y. Soh,
Y. Hae, and I. Kim,” Spatio-temporal Gaussian Mixture Model for

Background Modeling”, Proceedings of 2012 IEEE International

Symposium on Multimedia, 2012 pp.360-363. His current interest of
research includes object tracking, stereo vision, and parallel algorithms

for image processing.

Intaek Kim was born in Seoul, Korea in 1960. He

received BS and MS in electronics engineering from

Seoul National University in Seoul, Korea in 1980 and
1984 respectively. He obtained PhD in electrical

engineering from Georgia Institute of Technology in

Atlanta, Georgia, USA in 1992.He worked for Goldstar
central research lab from 1993 to 1995 as a senior engineer and joined

Myongji University from 1995. He is now a professor in the Dept. of

Information and Communication Engineering. His recent publications
deal with the area of face recognition, hypersepctral image and MR

imaging.His research interest includes pattern recognition, image

processing and smart grid area. Prof. Kim is a member of Korean
Institute of Electronics Engineer.

International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013

135©2013 Engineering and Technology Publishing

