
Evaluation and Improvement of GPU Ray

Tracing with a Thread Migration Technique

Xingxing Zhu and Yangdong Deng
Institute of Microelectronics, Tsinghua University, Beijing, China

Email: zhuxingxing0107@163.com, dengyd@tsinghua.eud.cn

Abstract—Ray tracing is a computer graphics rendering

technique. Different from the traditional rasterization

algorithm, the ray tracing algorithm simulate the real

vision process. Being able to deliver highly realistic

graphics effects, it has been considered as the fundamental

graphics rendering mechanism for high-end applications

and is also likely to be adopted as the work-horse of future

graphics hardware. However, the high computational effort

is the major stumbling block for ray tracing to be deployed

in real-time applications. In this paper we present a

detailed characterization of the ray tracing algorithm by

focusing on ray tracing algorithm based on BVH

acceleration structure. Using a state of art graphics

processor unit (GPU) simulator, we are able to provide key

insight on improving the performance of ray tracing on

GPUs. We propose thread migration technique to reduce

the cache miss rate and enhance the processing throughput

of primary and secondary rays.

Index Terms—ray tracing, graphic processing unit, thread

migration

I. INTRODUCTION

Ray tracing is a computer graphics rendering

technique [1]. Different from the traditional rasterization

algorithm [2], it is based on the vision formation process.

Since it is able to deliver highly realistic graphics effects,

it has been considered as the technology of choice for

high-end graphics. In addition, the ray tracing algorithm

has a strong potential to be adopted as the work-horse of

future consumer level graphics hardware. So far, it has

been widely used in such fields as engineering design,

film industry, entertainment, gaming, computer aided

design(CAD) and movie production. Especially, ray

tracing based graphics have appeared in many

Hollywood movies like “Happy Feet”, “The Lord of the

Rings” and “Avatar”.

However, the high computational demand is the major

stumbling block for ray tracing to be adopted in real-time

applications. Therefore, now the ray tracing technology

can only be used in off-line mode. In this paper we

present a detailed characterization of the ray tracing

algorithm based on BVH acceleration structure. Using a

state of art Graphics Processor Unit (GPU) simulator, we

are able to provide key insight on improving the

performance of ray tracing on GPUs. We also propose a

Manuscript received May 8, 2013; revised August 5, 2013

thread migration technique. The thread migration

reduced the cache miss rate and improved the speed of

the ray traversal.

The contribution of the paper is that the proposed

techniques significantly reduces cache miss rate. The

miss rate of the primary ray was reduced by 34% to 51%,

and the rate of the secondary ray was decreased by 62%

to 76%. The resultant speed of the primary ray traversal

is improved by 1.29 to 1.74 fold, while the speed of the

secondary is improved by 1.85 to 2.59 X.

To explore the performance of our algorithms, we

implemented our algorithms in CUDA(Compute Unified

Device Architecture) and benchmarked their

performance on an NVIDIA GeForce GTX 560Ti GPU.

We also used GPGPU-Simversion 3.x as our GPU

emulator. The emulator configuration is based on the

Fermi architecture with 15 SM(Streaming

Multiprocessor, SM) cluster, each cluster contains 10 SM

cores.

II. BACKGROUND

A. Ray Tracing Algorithm

The basic idea of ray tracing is to trace the light from

the observation point through each pixel on the view

plane to the objects in the scene. We compute the color

of the pixel according to the reflection and refraction

characteristics of the surface and the light source. The

light from the observation point to each pixel of the view

plane is called the primary ray. The light generated at the

intersection point of the scene according to the laws of

reflection and refraction of the light is called the

secondary ray.

The essential stage of ray tracing algorithm is to

search the objects that each ray intersects. The scene is

composed of a variety of different elements such as

triangles, polygons, polyhedrons, sphere, etc.. Among

those elements triangle is the most commonly used,

which is also compatible with the rasterization algorithm

primitive. A moderate size scene contains 50K to 10M

triangles. In order to improve space traversal

performance, several acceleration data structures are

widely used. It can reduce the complexity of algorithms

to log()O N [3], while N is the number of triangles in

the scene. The commonly used acceleration structures in

ray tracing are Bounding Volume Hierarchy (BVH)[4]

International Journal of Signal Processing Systems Vol. 1, No. 1 June 2013

©2013 Engineering and Technology Publishing 111
doi: 10.12720/ijsps.1.1.111-115

mailto:zhuxingxing0107@163.com

and kd-Tree [5]. BVH is a tree structure to organize the

Axis-Aligned Bounding Box (AABB) of special

geometric objects hierarchically. Kd-Tree is a

space–partitioning data structure for organizing points in

a k-dimensional space. Generally the performance of ray

traversal on kd-Tree is faster than on BVH [6], but BVH

is more suitable for dynamic scenes for the coordinates

of the AABB can be updated without reconstructing the

whole tree. Therefore, we use BVH as the acceleration

structure in this paper. General-purpose

B. （General-purpose）Graphic Processing Unit

GPU(Graphics Processing Unit, GPU) is a graphic

processing hardwarewhich was designed for rasterization

algorithm. Modern GPU are mostly programmable so

that is can also be used for other parallel computing

applicationsGPU is a highly parallel, multithreaded,

manycore processor with tremendous computational

power and memory bandwidth. The NVIDIA Fermi

architecture has 512 CUDA(Compute Unified Device

Architecture) core, each CUDA core can operate one

integer or floating-point instruction per clock cycle.

There are 16 SM coreson one chip.Each of them contains

32 CUDA cores. All threads in GPU are organized into

blocks, and a certain number of threads in the block are

organized into a warp. The warp can be mapped to the

SM.

III. QUANTITATIVE ANALYSISOF THE RAY TRACING

ALGORITHM

A. Test Scene

In the paper we use our implementation of TimoAila’s

open source GPU ray tracer [7] to analyze some detailed

characterization of ray tracing algorithm.In order to get

the implementation details of the underlying hardware,

we used the traditional GPU emulator GPGPU-Sim. The

detail information is shown in Fig. 1 and Table I.

B. The Cache Miss Rate

In the many-core architecture, the global memory

access latency will increase greatly with the increase of

the numbers of SM cores, which is influenced by on-chip

interconnection network and the limitation of the global

memory port, and thus affect the scalability of the

many-core architecture.

For many-core architecture, the memory access

latency is (described) in equation (1).

 [()](1)

 is the access latency to the cache in the core, is

the access latency to the global memory-side secondary

cache, is the access latency to the global memory,

 is the network latency from the SM core to the

global memory, and are the cache miss rate.

Fig. 2, Fig. 3 and Fig. 4 show the simulation results of

the ray tracing program on the GPGPU-Sim emulator

about the conference room scene. Each cluster contains

15 SM cores.

Figure 1. Test scenarios(top-left: fairy forest, top-right:
conference room, bottom-left: Stanforddragon, bottom-right:

happy Buddha), the render resolution is 1024*768.

TABLE I. TEST SCENARIOS

Scene Vertex Triangle
BVH

Node Leaf

Fairy Forest 100737 174117 57519 57519

Conference

Room
166907 282759 103801 103801

Stanford

Dragon
435545 871414 299504 299504

Happy
Buddha

543775 1087425 385901 385901

Figure 2. Execution speed of the primary and secondary rays
on the conference room scene

Fig. 2 shows the total processing speed significantly

deviates from the linear. The secondary rays even start to

decline, when the number of the core cluster is more than

5. Fig. 3 shows that the number of the global memory

access increaseswith the increase number of the SM

cores, and thus lead to the increase of the network

latency (). Due to are fixed memory

latency, we can only optimize the cache miss rate.

Consider the size of the cache is limited by the chip area,

we try to change the way of access to reduce the cache

miss rate.

International Journal of Signal Processing Systems Vol. 1, No. 1 June 2013

©2013 Engineering and Technology Publishing 112

Figure 3. Network latency and the cache miss rate

Figure 4. The cache miss rate about the conference room scene(top:
the primary ray cache miss rate, bottom : the secondary ray cache miss

rate)

Fig.4 shows that the cache miss rate of the primary ray

is about 20%, and the cache miss rate of the secondary

ray is about 40%. Such high degree of cache miss rate

will result in frequent replacement (thrashing) of the data

in the cache, affecting the performance of the cache.

IV. RESULTS AND ANALYSIS OF THE RAY TRACING

ALGORITHM BASED ON THREAD MIGRATION

A. Thread Migration

Traditionally, a ray will be bound to a thread in the ray

tracing program running on GPU. All the rays will be

packaged and mapped to the SM cores, then do parallel

computing on GPUs. That means we bind the threads

with the SM core and the data, for each SM core to

access is random. The random access to data will cause

high degree of the cache miss rate and will greatly

restrict the program’s performance. Otherwise ， the

information of the ray tracing program for each thread

only includes the light source, direction and other

relevant information, which is very simple. So we solve

the problem from another standpoint. We bind data with

the SM core, and the thread executes through the

scheduling assignment. This is the thread migration [8].

In the thread migration, the memory address is divided

into a few section, each section corresponds to a SM core.

Only the corresponding SM core can access the data in

the section. In the thread migration, the thread will

migrate between the SM cores according to the accessed

data. For example, if the thread(i)running on the SM

core(t) needs to access the data address corresponding to

the SM core(j)(i), the information of thread(i) will be

migrated to SM core(j) .

We design a thread migration program which takes the

advantage of the characteristics of BVH traversal. We

bind the sub-tree with the SM core and divide the

traversal process into scheduling distribute stage and

sub-tree traversal stage. During the scheduling stage, the

thread will traversal the upper BVH tree, and will stop

after it reaches the certain level of the BVH tree. Then

the accessed sub-tree will be inserted into the waiting

queue. During the sub-tree traversal stage, they will

traversal the sub-tree using the BVH traversal algorithm.

Fig. 5 shows the detailed information.

Figure 5. Scheduling distribute stage and sub-tree traversal stage(top:
Scheduling distribute stage, bottom: sub-tree traversal stage)

B. Results and Analysis

We use the GPGPU-Sim to approximately simulate

the ray tracing algorithm based on the thread migration,

In our design, each sub-tree traversal program running on

the SM core only can traversal the sub-tree. This reduces

the competition of the different threads of the data in

cache and alleviates the cache miss rate. However, we

cannot directly specify the thread on different SM cores

in GPGPU-Sim emulator, but can only through the

automatic allocation of hardware and software. Therefore,

it is difficult to achieve the separation of different

sub-tree traversal thread.

We allocate a certain virtual cache to each sub-tree

bounding on the SM core to achieve our goal. There are

International Journal of Signal Processing Systems Vol. 1, No. 1 June 2013

©2013 Engineering and Technology Publishing 113

m virtual caches, wherein m is the number of the

sub-trees. Each virtual cache is as large as the real one

andcorresponds to a curtain sub-tree. To run a sub-tree

thread, only the corresponding virtual cache data can be

accessed while the others cannot. But the data in the

other virtual caches is still stored without being replaced.

Thus the data is still available when we switch to another

sub-tree thread. Due to the cache miss rate are the main

problem the thread migration technique proposed to

solve, the virtual cache can approximately simulate its

behavior.

TABLE II. THE MISS RATE IN THE TRAVERSAL STAGE

Ray Scene

Cache miss rate

Standard Improved

Improved/

standard

(%)

Primary
ray

Fairy 0.2872 0.1409 49

Conference 0.2875 0.1888 66

Dragon 0.3558 0.1736 49

Buddha 0.3884 0.2300 59

Secondary

ray

Fairy 0.3891 0.0945 24

Conference 0.3558 0.0979 28

Dragon 0.4818 0.1827 38

Buddha 0.5007 0.1598 32

TABLE III. THE SIMULATION TIME IN THE TRAVERSAL STAGE

Ray Scene

Simulation cycle

Standard Improved
Improved
/standard

(%)

Primary

ray

Fairy 517168 399729 77

Conference 297066 223943 75

Dragon 386685 221619 57

Buddha 291061 186805 64

Secondary

ray

Fairy 1748566 693091 40

Conference 1081839 583214 54

Dragon 1581138 665433 42

Buddha 3009938 1161525 39

Table II and Table III show the results simulated on

the GPGPU-Sim. From the Table II we can see that the

miss rate of the primary ray was reduced by 34% to 51%,

and the rate of the secondary ray was decreased by 62%

to 76%. From Table III we can see that the resultant

speed of the primary ray traversal is improved by 1.29 to

1.74 fold, while the speed of the secondary is improved

by 1.85 to 2.59 X. In addition, we can see that the

accelerator ratio of the complex scenes is better than the

simple scenes. This indicates that the thread migration

technology has advantage in processing the complex

scenes. The reason is that the random memory access in

such cases is likely to cause the problem of clogging of

memory port and interconnect network which can be

solved by the thread migration technology.

V. CONCLUSION

In this paper we present a detailed characterization of

the ray tracing algorithm by focusing on ray tracing

algorithm based on BVH acceleration structure. Using a

state of art graphics processor unit (GPU) simulator, we

are able to provide key insight on improving the

performance of ray tracing on GPUs. We propose thread

migration technique to reduce the cache miss rate and

enhance the processing throughput of primary and

secondary rays.

ACKNOWLEDGMENT

The traversal part of our code is the implementation of

TimoAila’s downloadable ray tracing. And the author

would like to explicitly thank the anonymous ICSAP

reviewers.

REFERENCES

[1] A. Appel, “Some techniques for shading machine rendering of

solids,” in Proc. AFIPS Conf., Washington DC, 1968, pp. 37-45.

[2] L. Szirmay-Kalos, T. Umenhoffer, B Toth, et al. “Volumetric

ambient occlusion for real-time rendering and games,” IEEE

Computer Graphics and Applications, vol. 30, pp. 70-79, Jan.

2010.

[3] J. Pantaleoni and D. Luebke, “HLBVH: Hierarchical LBVH

construction for real-time ray tracing of dynamic geometry,” in

Proc. of the Conf. on High Performance Graphics, 2010, pp.

87-95.

[4] H. Weghorst, G. Hooper, and D. P. Greenberg, “Improved

computational methods for ray tracing,” ACM Transactions on

Graphics, vol. 3, pp. 52-69, Jan 1984.

[5] I. Wald, “Fast construction of SAH BVHs on the Intel many

integrated core (MIC) architecture,” IEEE Trans. on Visualization

and Computer Graphics, vol. 18, pp. 47-57, Jan. 2012.

[6] A. Santos, J. M. Teixeira, T. Farias, et al., “Understanding the

efficiency of KD-tree ray-traversal techniques over a GPGPU

architecture,” International Journal of Parallel Programming, vol.

40, pp. 331-352, June 2012.

[7] T. Aila and S. Laine, “Understanding the efficiency of ray

traversal on GPUs,” in Proc. of the High Performance Graphics,

New York, 2009, pp. 145-149.

[8] M. Lis, S. K. Shim, O. Khan, and S. Devadas, “Shared memory

via execution migration,” presented at International Conference

on Architectural Support for Programming Languages and

Operating Systems, New York, 2011.

XingxingZhu received her B.S. degree in In School of

Information Science and Engineering from the

Southeast University, Nanjing, China in 2009. She is

currently pursuing the M.S. degree in Institute of

Microelectronics in the University of Tsinghua, Beijing,

China. Her research interests mainly focus on ray

tracing algorithm and general purpose computing on graphics

processing hardware (GPGPU).

International Journal of Signal Processing Systems Vol. 1, No. 1 June 2013

©2013 Engineering and Technology Publishing 114

Yangdong Deng received his Ph.D. degree in Electrical
and Computer Engineering from Carnegie Mellon

University, Pittsburgh, PA, in 2006. He received his

ME and BE degrees in Electrical and
ElectronicsDepartment from Tsinghua University,

Beijing, in 1998 and 1995, respectively. His research

interests include parallel electronic design automation
(EDA) algorithms, parallel program optimization and general purpose

computing on graphics processing hardware.

International Journal of Signal Processing Systems Vol. 1, No. 1 June 2013

©2013 Engineering and Technology Publishing 115

